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Overview

Our work targets the task of data-to-text generation. Given multiple
input triples, a model is expected to generate a fluent and faithful surface
realization. Fine-tuning with Large Language Models has achieved strong
performance, but it relies on human annotated data that is expensive and
time-consuming to obtain. It also may suffer faithfulness issues when the

amount of annotated data is limited. To overcome the aforementioned

limitations, we adopt the Cycle Training approach.
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Cycle training uses two models which are inverses of each other.
It consists of the Data-Text-Data cycle that enforces the
self-consistency of data and the Text-Data-Text cycle that enforces
the self-consistency of text in a reverse manner. As illustrated in the
figure above, the upper-level models are frozen to generate the
intermediate inputs for the training of the lower-level models that
attempt to reconstruct the initial inputs. Through iterative training
between the two cycles, cycle training can converge to models with
near-supervised performance while ensuring and even improving

the faithfulness of the output.
Datasets

DBPedia

WebNLG 35,.426/4,464/7305 1236 20,126 21/ 80
(16 categories)

E2E Restaurants | 33-482/1,475/1,475 41 4/7 6,158 22/ 73

WTQ WL SIS 3,253/361/155 5,013 2/10 11,490 13 /107
(Open-domain)

SEIL, | et 526/59/38 946 2/6 2,353 12 /34

(Open-domain)

Experiments
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e A new quantitative annotation

Tested on WebNLG

Human Evaluation

schema that features better

objectiveness, consistency, and precision

e Count of Factual Errors measures the factual correctness of the
generated text with respect to the entities (subject and object) and
predicates of the input triplets. Factual errors are information in the
generations that contradict the information in the input triplets.

e Count of Hallucination Errors measures the relevance of the
generated text with respect to the input triplets. Hallucination errors
occur when words or phrases in the generation cannot be inferred

from the input triplets. Unlike FEs, HEs add information not present in

the triplets or reference, but do not directly contradict the triplets.
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* Additional results on E2E and WTQ available in paper; Bold: best of all; Underlined: best of low-resource settings .

e Unsupervised cycle training at different overlapping levels

Dataset Split Size Unique |Triples/Sample|Vocab |Tokens/Sample
(Train/Dev/Test) |Predicates| (Median/max) | size | (Median/max) p

PARENT ¢ METEOR
44 43.09 43.47 43.76
41 39.28
o 38.07
%
T
35 | 3433
0% 25% 90% 75% 100%

Overlapping Level

* Additional evaluation with other metrics available in paper

Main Findings

Cycle training, when initialized with a small amount of labeled samples,

significantly improves the generation performance over the
low-resource fine-tuning method, and it also achieves competitive
performance with respect to the fully-supervised method.

Compared to the fully-supervised fine-tuning approach and evident
from the PARENT score as well as the human evaluation, low-resource
cycle training generated texts have better faithfulness to the input data
when applied to multi-domain and open-domain datasets (WebNLG,
WTQ, and WSQL).

When the size is the same, the unpaired data corpus and text corpus
used for cycle training need to have at least 50% entities (or say, latent

information) overlap to achieve performance at an ideal level.



