

Faithful Low-resource Data-to-Text Generation through Cycle Training

Zhuoer Wang, Marcus Collins, Nikhita Vedula, Simone Filice, Shervin Malmasi, Oleg Rokhlenko

Overview

Our work targets the task of data-to-text generation. Given multiple input triples, a model is expected to generate a fluent and faithful surface realization. Fine-tuning with Large Language Models has achieved strong performance, but it relies on human annotated data that is expensive and time-consuming to obtain. It also may suffer faithfulness issues when the amount of annotated data is limited. To overcome the aforementioned limitations, we adopt the Cycle Training approach.

Data-Text-Data Cycle

Text-Data-Text Cycle

Cycle training uses two models which are inverses of each other. It consists of the Data-Text-Data cycle that enforces the self-consistency of data and the Text-Data-Text cycle that enforces the self-consistency of text in a reverse manner. As illustrated in the figure above, the upper-level models are frozen to generate the intermediate inputs for the training of the lower-level models that attempt to reconstruct the initial inputs. Through iterative training between the two cycles, cycle training can converge to models with near-supervised performance while ensuring and even improving the faithfulness of the output.

Dataset	Domain	Split Size (Train/Dev/Test)	Unique Predicates	Triples/Sample (Median/max)	Vocab size	Tokens/Sample (Median/max)
WebNLG	DBPedia (16 categories)	35,426/4,464/7,305	1,236	3 / 7	20,126	21 / 80
E2E	Restaurants	33,482/1,475/1,475	41	4 / 7	6,158	22 / 73
WTQ	Wikipedia (Open-domain)	3,253/361/155	5,013	2 / 10	11,490	13 / 107
WSQL	Wikipedia (Open-domain)	526/59/38	946	2 / 6	2,353	12 / 34

Datasets

Fully-supervised fine-tuning with all labeled samples

- Low-resource fine-tuning with 100 labeled samples
- Additional pretraining on target domain text and Low**resource fine-tuning** with 100 labeled samples
- **Unsupervised cycle training** with unpaired samples
- Low-resource cycle training with 100 labeled samples for fine-tuning and unpaired samples for cycle training

ethod	ROUGE-1	ROUGE-2	ROUGE-L	METEOR	BLEU	BERTScore	PARENT		
<u>Tested on WebNLG</u>									
supervised e-tuning	59.99	40.93	49.32	39.76	42.83	95.41	45.67		
-resource e-tuning	55.55	36.63	46.21	35.22	33.63	94.60	41.37		
dditional training	55.28	35.71	45.41	35.26	33.44	94.33	39.47		
upervised e training	58.65	37.70	46.18	37.98	36.36	94.42	43.24		
-resource e training	<u>60.21</u>	<u>40.56</u>	<u>48.71</u>	<u>39.74</u>	<u>41.77</u>	<u>95.18</u>	<u>46.14</u>		
Tested on WSQL									
supervised e-tuning	58.27	32.77	48.40	37.95	22.97	93.18	24.00		
-resource e-tuning	56.37	31.60	49.42	33.57	23.34	92.57	23.68		
dditional training	56.01	30.92	47.00	35.34	21.18	92.24	22.66		
upervised e training	42.24	15.17	33.52	29.45	4.03	85.37	14.63		
-resource e training	<u>58.72</u>	<u>33.13</u>	<u>51.01</u>	<u>37.43</u>	<u>25.60</u>	<u>93.03</u>	<u>25.84</u>		

Method	ROUGE-1	ROUGE-2	ROUGE-L	METEOR	BLEU	BERTScore	PARENT	
<u>Tested on WebNLG</u>								
Fully-supervised fine-tuning	59.99	40.93	49.32	39.76	42.83	95.41	45.67	
Low-resource fine-tuning	55.55	36.63	46.21	35.22	33.63	94.60	41.37	
+ Additional pretraining	55.28	35.71	45.41	35.26	33.44	94.33	39.47	
Unsupervised cycle training	58.65	37.70	46.18	37.98	36.36	94.42	43.24	
Low-resource cycle training	<u>60.21</u>	<u>40.56</u>	<u>48.71</u>	<u>39.74</u>	<u>41.77</u>	<u>95.18</u>	<u>46.14</u>	
Tested on WSQL								
Fully-supervised fine-tuning	58.27	32.77	48.40	37.95	22.97	93.18	24.00	
Low-resource fine-tuning	56.37	31.60	49.42	33.57	23.34	92.57	23.68	
+ Additional pretraining	56.01	30.92	47.00	35.34	21.18	92.24	22.66	
Unsupervised cycle training	42.24	15.17	33.52	29.45	4.03	85.37	14.63	
Low-resource cycle training	<u>58.72</u>	<u>33.13</u>	<u>51.01</u>	<u>37.43</u>	<u>25.60</u>	<u>93.03</u>	<u>25.84</u>	

onal results on E2E and WTQ available in paper; **Bold**: best of all; <u>Underlined</u>: best of low-resource settir

Experiments

* Additional evaluation with other metrics available in pape

Human Evaluation

- objectiveness, consistency, and precision

- triplets.

Method	Factual Errors	Hallucination Errors	Information Misses	Fluency Preference
Low-resource fine-tuning	8.05	14.84	21.39	2.00
Low-resource cycle training	0.49	2.57	3.36	1.80
Fully-supervised fine-tuning	2.08	11.48	8.46	1.73

esults, per dataset results available in paper; FE, HE, and IM are normalized, see details in paper

- WTQ, and WSQL).

amazon

• A new quantitative annotation schema that features better

• Count of Factual Errors measures the factual correctness of the generated text with respect to the entities (subject and object) and predicates of the input triplets. Factual errors are information in the generations that contradict the information in the input triplets.

• Count of Hallucination Errors measures the relevance of the generated text with respect to the input triplets. Hallucination errors occur when words or phrases in the generation cannot be inferred from the input triplets. Unlike FEs, HEs add information not present in the triplets or reference, but do not directly contradict the triplets.

• Count of Information Misses measures the information coverage of the generated text with respect to the predicates given in the input

• Fluency Preference measures the quality of the generated text in terms of the grammar, structure, and coherence of the text.

Main Findings

• Cycle training, when initialized with a small amount of labeled samples, significantly improves the generation performance over the low-resource fine-tuning method, and it also achieves competitive performance with respect to the fully-supervised method.

• Compared to the fully-supervised fine-tuning approach and evident from the PARENT score as well as the human evaluation, low-resource cycle training generated texts have better faithfulness to the input data when applied to multi-domain and open-domain datasets (WebNLG,

• When the size is the same, the unpaired data corpus and text corpus used for cycle training need to have at least 50% entities (or say, latent information) overlap to achieve performance at an ideal level.