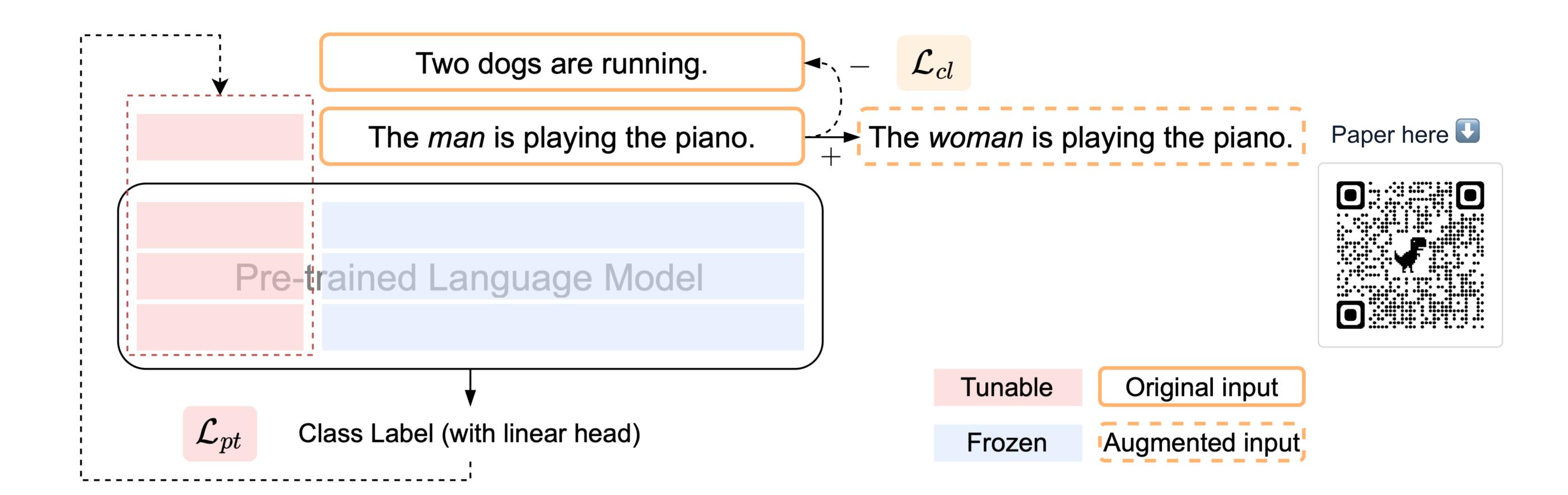
Co²PT: Mitigating Bias in Pre-trained Language Models through Counterfactual Contrastive Prompt Tuning

Xiangjue Dong¹, Ziwei Zhu², Zhuoer Wang¹, Maria Teleki¹, James Caverlee¹
¹ Texas A&M University, ² George Mason University



INTRODUCTION

- Relationship between intrinsic and extrinsic benchmarks (which evaluate fairness in downstream applications) **correlates weakly** (Kaneko et al., 2022).
- Models after being debiased, tend to **re-acquire or even amplify biases** during the fine-tuning process on downstream tasks (Zhao et al., 2017; Leino et al., 2019).

We propose **Co²PT**, an efficient and effective *debias-while-prompt tuning* method to mitigate biases via counterfactual contrastive prompt tuning on **downstream tasks**.

METHODS

- **Deep Prompt Tuning.** We incorporate continuous prompts as prefix tokens in every layer of the PLM, denoted as \mathcal{L}_{pt} .
- Counterfactual Pairs Construction. Take the binary-gender debiasing task shown in the above Figure for example, the bias-attribute terms are (man, woman), (he, she) ... The man is in the input sentence The man is playing the piano. We replace it with woman while leaving non-attribute words unchanged. Then the counterfactually augmented sentence is The woman is playing the piano.
- Counterfactual Contrastive Learning.

$$\mathcal{L}_{cl} = -\log \frac{e^{\sin(\mathbf{p} \oplus \mathbf{h}_i, \mathbf{p} \oplus \mathbf{h}'_i)/\tau}}{\sum_{j=1}^{N} e^{\sin(\mathbf{p} \oplus \mathbf{h}_i, \mathbf{p} \oplus \mathbf{h}'_j)/\tau}}$$

· Learning Objectives.

$$\mathcal{L} = \mathcal{L}_{pt} + \alpha \mathcal{L}_{cl}$$

DATASETS

	Train	Validation	Bias-Test
STS-B	5,749	1,500	16,980
SNLI	550,152	10,000	1,936,512
Bias-in-Bios	255,710	39,369	98,344

RESULTS

- We observe a
 significant
 reduction in the bias
 score. These findings
 indicate a substantial
 improvement in the
 ability to mitigate bias.
- These results clearly demonstrate the **effectiveness of integrating** Co²PT into established debiased models for downstream tasks.
- We perform an extensive ablation study to show how different components affect Co²PT.

ZariDO*	0.347	0.922	0.585	0.880 / 0.878
Zaribo	0.547	0.922	0.363	0.000/0.0/0
$ADELE^\dagger$	0.121	-	-	0.889 / -
Context-Debias	0.332	0.916	0.539	0.879 / 0.876
Auto-Debias	0.312	0.902	0.502	0.884 / 0.880
MABEL	0.066	0.204	0.013	0.889 / 0.885
PT	0.321	0.749	0.369	0.889 / 0.885
Co ² PT (ours)	0.058	0.167	0.005	0.884 / 0.880
Model	Diff.↓	τ:0.1 ↓	τ:0.3 ↓	Pear. / Spear.
Model Context-Debias	Diff. ↓ 0.332	τ :0.1 ↓ 0.916	τ :0.3 ↓ 0.539	Pear. / Spear. 0.879 / 0.876
	v	v	•	_
Context-Debias	0.332	0.916	0.539	0.879 / 0.876
Context-Debias + Co ² PT	0.332 0.088	0.916 0.361	0.539 0.010	0.879 / 0.876 0.885 / 0.881

 τ :0.1 \downarrow

0.867

0.511

0.445

0.282

0.131

0.112

τ:0.3↓

0.417

0.080

0.048

Pear. / Spear.

0.883 / 0.879

0.885 / 0.881

0.892 / 0.889

0.892 / 0.889

Model	Diff. ↓	τ:0.1 ↓	τ:0.3 ↓	Pear. / Spear.
PT	0.321	0.749	0.369	0.889 / 0.885
PT+CDA	0.291	0.747	0.351	0.890 / 0.886
PT+SCL	0.161	0.548	0.133	0.883 / 0.878
Co ² PT+SCL _n	0.117	0.467	0.056	0.884 / 0.878
PT+NLI+CL	0.080	0.280	0.022	0.881 / 0.876
PT+NLI+CL _p	0.207	0.687	0.222	0.884 / 0.881
PT+CDA+CL _p	0.271	0.725	0.338	0.886 / 0.883
$Co^2PT(PT+CDA+CI)$	0.058	0 167	0.005	0.884 / 0.880

IMPACT of HYPERPARAMETERS

Model

BERT

BERT+CDA

ZariCDA*

 $+ Co^2PT$

- A larger prompt length enables the model to achieve better model performance on downstream tasks more rapidly while still maintaining a lower bias score.
- A higher temperature value corresponds to less weight of the cosine similarity calculation, resulting in decreased effectiveness in bias mitigation.
- A lower coefficient value assigns less weight to the contrastive module, leading to decreased bias mitigation effects.

